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ABSTRACT

Experimental investigations revealed that ths high temperature creep
rate, £ , is related to the stress, O , by &~ T for low stresses and
£~ escr for high stresses where rn and B are constsnts independent of
the creep strain and tempsrature. According to a preliminary dislocation
climb model for high temperature cresp, the activation energy for creep
sheuld be that for self-diffusion and the effect of stress on the creep
rate should depend on the number of active Frank-Raad sources, and the
rate of climb deperds on the structure c¢s determined by the pattern of
climbing dislocations. Many of the experimental observations cn high

temperature creep can be accounted for by this model.
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INTRODUCTION
The creep of metals Jdepsnds on the two externally adjustable variables
of temperature and stress. Recent data(1-5) emphasize that the effect of
temperature on the creep rate can be formulated to be
. _aH
£ ~ g RT g = constant, . (1)
where £ = creep rate

R = gas conctant

AOH = activation energy for seli-diffusiocn
T = absolute temperature
and T = stress.

In spiie of extensive study few definitive conclusions have yet
matured on the effect of stress on the creep rate. Several factors have
contributed to the vague >pinions currently prevalent on the effeci of
stress on the creep rates

1. Theory. The predicted effect of stress on the creep rate was
based on unrealistic an2 immaturely conceived models of the ecreep phenomenon
at high temperatures.

2. Experiment. In general no attempt was made to correct for the
fact that different substruciures are produced during creep at different
stresseas. Consequently the observed effect of stress on the creep rate
included the unknown effect of diffeorences in structiures.

Theories of creep can be generalized into one of three major categories:

1. CGreep arises frc=zm the contimued gensration of dislocations. Under
thees conditions the Becker—Orowan(6-9) type of relatiounship holds where

' ~N(To-g) Vv

é ~ e 2GRT (2)
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and T, = yleld strength at T =0
(G = shear modulus of elasticity
V = volume of unit under deformation stress G

N = Avogadro's mumber.

VT PN TR

This relationship, howsver, is contrary to the observed facts which sub-
stantiate Bg. 1 and therefore insist that the temperature and atress terms

g

on the creep-rate 2rs separable.

2, Creep arises from thermal activation of dislocations over energy
. (10)

o T S P i

barriers in the slip plane. Under these conditions the Kauzmann type
of relationship
: _ad
E~ e ' sinh %—g (3)

is obtained where A depends on the length of the activated dislocation

>
S bt el

loop. This relationship gives
. -(AR=AT) .
g~ e RT AT 55 (4)

S

o e )

faloy

== << (5)

apd E ~ © c

where AH depends on the barrier strengths. The rslationship given by

Eq. 4 does not agree with experiment because ¢ is known not to enter the

(]
P
q

'«
et i e 4t

%; eresp relationship as S_‘T, .

‘ g 3. Creep arises from stress reliel at a Frank-Read source as a

i ;: result of dislocation climb to new slip planes. Under these condiivions
‘%’ K l(ott(n') suzgasts a relationship similar to that given by Eq. 4, where AH
,é’l‘ 418 nov that for self-4irfifusion. And again this theory falls to agree 'I.ith

4
Aialy:

all of the facts.
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Elaborations of generation or activation theories (1 and 2 above)

.

for creep will not reduce their deviations from the facts. The dislocation
climb theory (3 above) appears most promising cince it predicts that OH
. should be that for self-diffusion as 1is observed. It apparently contains
a resolvable misconception of how the stress affects the creep rate. But,
§ until this issue is resolved. it too must be considered inadequate to
account for the facts.
| Examples of experimentally determined effects of stress on the creep
rate are summarized in Table I. With the exceptions of the linear relation-
ship of type A, all evaluations were condurted at the secondary creep rate

and consequently are influenced by sffects of structural differences in-

L I8

troduced by the creep stiraining at different stresses. The linear rela-
*ionship given by Type A for low stress, however, was obtained under
conditions where no initial plastic straining was obtained. Consequently
the initial creep rates in these tests refer exclusively to the original

annealed structure. Although these data are free from the objectiona that

have been raised against the remaining types, they are not definitive
becauzes any stress function whatscever must become linsar over a suffliciently
narroe¢ range of the aprlled stress.

Recent 1nvestigationa(2o) on fhs offect of stress on the cresp rate
have been conducted under conditions where the strusture was maintained

¢ .stant, indicating that

_ H Yoy
£ ¥ : (6)

~y €

In these investigations each specimen was precrept under identical condi-

tions to the same strain whereupon the stress was decreased to a new value
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and the initial creep rate immediately following ihe reduction in stress

was measured. Repetitions of this procedurs for a series of new decreased
siresses permitted ccrrelations of the new initial creep rates as a func-
tion of the new stresses. Inasmuch as the precreep conditions were held
invariant for any one series of tesis, tne siruciure immsaiately following
a decrease in stress was identical for &ll msmbers of the series. (Increas-

ing the stress was purposely avoided because such higher stresses might

have indnced immadiast:

straining whick in turn would have modified the
structure in a way that would have been dependent on the magnitude of the
new stress.) Investigations under various precrept conditions revealed
that B was insensitive to the stress, strain and temperature conditions
of precreep as well as the instantaneous temperature. Solid soiutisn
alloying, however, gave lower values of B ; the B values for a cold
worked metal(zl) were lower than those for the annealed state but they
increased during creep and approached those of the annealed state after
rather extensiws precreep. These results insist on the separation of the
tempsrature sensitive and stress sensitive portions of the creep rate
squation,

The dependence of the creep rate on th3y temperature and atress for

a given structure, Eq. 6, might equally be written as
a
é_e'ﬁg" ~ % sinh BT . )

Then the creep laws over various ranges of stress would reduce to the

following limiting relationshipss

. = ey
1. High BT ge% ~J @ (8}
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2. Intermediate BT ge T ~ % sinh B0 (9)
o
3. low BC fe® ~ BT (20)

In fact, over sufficlertly narrow ranges of stress in the intermediate

range of BT , a CFn Jaw might also be satisfactory. If tha hyperbolic

sine law is valid over the entire stress range, " of ag” in the irter-
mediate range will vary dependent on the exact range of stresses lavestigated.

Although reasonably definitive confirmation has been quoted above for
the high and low stress lawe for creep under identical structures, the
best creep rate law for the intermediate stress range has not yst been
evaluated. This evaluaticn in importent from a number of aspects:

l. A lmowledge of the creep law over the antire range of stresses
is of substantial importance to the desizn engineer.

2, The creep rate law over the intermediate ranges of stress will
rrove to be definitive in either acceptance or wajection of the sugges%ion
that the creep rate depends cn the hyperbolic sins of the stress over the
entire range of stress.

3. A definitive evaluation of the creep rate law over the inter-
mediate siress range .11l assist in the development of more realistic

theories of creep. These factors stimulated the following investigations

MATERTALS AND TECHNIQUES

The series of alpha solid solutions of magnesium in high purity
gluminum identified in Table II were used in the present investigation.
After machining, the specimens were annealed as described in Table II to

achieve nbout the sure grain size.

All orcep tests were conducted under conastant load conditions, the

temperature being held constiznt to within +1°C of the reported values.

I Y M TS T P M e e S TR T P WP S L PR e 2y e it s AT T e

e e o 0 G S




. i i St o M.

<
w2 b
RN WS S s

PRCRIRN e (1. 5o IO

N

S EHSNPT NS TR

R R R IR ST e

Lo Tt o celll

P

B i e Y

TABLE IT

Chemical Analyses, Annealing Treatment end
Grain Size of Aluminum Alloys Investigated

(Atomic Chemical Analyses Annaaling Treat-|Grain
[Percent | _ (Wt. £ Impurities) ment of As  |Diam.
Mg [ Co[¥e |51 [h | Mg | Received Stock | (em)
1 0 «001{.0001.001{.000}.001 {50 mins at 510%¢c| .08
1.06 «001].00){.001{.001} — 65 mins at-540%°C| .08
2,09 «001}.002].001]|.001| —- {65 mins at 540°C| .08
3.12 .001}.002}1.,001{.001) — 60 mins at 60090 008
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The stress was measured to within 420 psi and the creep strains to within

+0,0001.

EXPERIMENTAL RESULTS

At éufficiently low creep stresses, the deformation is exclusively
elastic and the initial plastic strain is zerc. Typical examples of creep
ourvas for such cases are given in Fig. 1 where the elastic component of
the strain has been subtracted from the total strain to give a true creep
strain. Consequently the initial creep rates refer exclusively to the
effect of stress on the creep rate since the initial structure is always
that for the previously annealed condition. As shown in Fig. 2 the initial

creep rate is related to the stress according to
g ~ a" (11)

where N (the slope of the log £ versus log & curve) is insensitive to
the absolute temperature. This again suggests that the stress and temper-
sture terms for high temperature creep are separable, as shown in Fig. 3

where
Ee ® ~g” (12)

over the range of temperatures from 531* to 853®°K. The fact that AH is
36,000 cal/mole iu the low stress tests as wall.as for the previoasly re-
ported high streas testsgl¥urther empnhasizes the fact that ths activation
energy for high temperature creep is insensitive to the stress.

Similar teats on the various alpho solid solutions of Mg in Al iden-

tified in Table II are correlated in Fig. 4. Titus, within the normal scatter
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{ in the data,
f _an
§ = s'e VT g" (13)
. wnere N decrel;asea with alloying and the parameter S' (obtained by extra-
polating Ee %—? to unit stress) for the annealed state is insensitive to
alloyling.

Therefore these data suggest that the creep law for high temperatures
is

aH
R

tE=5e " g a8

MR-
where S qp(CJ') : S'g” for intermediate stresses and S @(T) = S €

for high stresses. Unfortunately the previously reported high stress
tests(?%?) 414 not extend +o sufficiently low velues to include the U "

range and the intermedia te stress tests repcrted above could not be extended

to sufficiently high stresses %o enter the € 89 range because of introduc-
tion of the complicating factor of initisl plastic straining. Thus the
merging of the two ranges of conditions was not verified under a single
teat procedure but implied by two sets of results obtained under alternate
test conditions. In order to provide unambiguous evidence of the merging
of the two ranges of conditions, the additional tests documented in Fig. 5
were undertaken. Here again the previously described decrease in stress
tschnique was adopted in order to maintain the same structurss for sny one
sequence of tests. Again the GBG- relationship was observed to be valid

8g
over the high stress range. But consistent deviations from the € re-

lationship were obtained, as shown by the data of Fig. 5, at appropriately
low stresses. As indicated in Fig. 6 the creep rate at thess low stresses
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besomss proportionsl to T"”. Thus it appears possible to go from T " to
the ew law in one series of tests.

If the two ranges of creep laws merely repressnt ranges of transition
of a singla fonction from ee(rto c” s the transition must occur at the
came values of B0 and T n independent of the values of B and M . The
data given in Fig. 7 reveals that the transition occure at BT £ 1,5 where-
as the data of Fig. 8 shows that the transition ococurs at T~ = 1011,

The different elevations of tlie curves are ascribable to the different
values of the structure sensitive parameters S'or S".

Therefore the valid.ty of Bq. 14 for the creep rate is gquite well
established. Careful examination of the data, however, clearly demonstrates
that 9 (T) is not the hyperbolic sine function. And thus far no single
function haz been found that will agree well with the data over the entire
range of stresses employed, in spite of the proof given above that such a
function exists.

Up to the present only the initial creep rates following either the
application of a low stress or the reduction of a precreep stress were
considered. In both cases, however, transients were observed which are
believed to be important in the formmlation of an aceurate theory for high
temperature creep. Upon initial loading to low stresses transiec.ts of the
type shown in Fig. Gi were obtained, where with continned time at the stress
the creep rate increased before creep entered the usual rangs of the primary
stage of decreasing creep rates. Upon decrease of the stress the initial

creep rate was always higher than those obtained afier a short peried of

additicnel creep as shown in Fig. 9B. Such transients persisted only for

smali strains,

+ e s " \

s AP,



N e

-

e e
WIEYIS

e

'
;
2
i
E
:
i
i

a2 s b gl ] 0

0y
N

k{;’

ey

i)

£

]

fo R sl 15 o AV

UMD SR W et e g e .
e T
10'4 ’__,.,-r‘ﬁ"_ n
10 }MW
s (B0 o oo
o % ol ,;:‘::‘_/
z 74 A
.z oV ‘/ ]
= A
.5:00 -
g A FROM
. &
z
e
i -
-
d
10
LOW STRESS

HIGH STRESS
RANGE

t ek w HOURS™, T N )
(=]
o0

[ ¢t eb0 _
J AT. & Mg R AW 1

IN Al 531°K 733°% 853" CAL/MOLE 5(PSH
0 a 34,000 8o
1 'S A& 36,000 853
21 £ A 36,000 1288
3l o A [ 36,000 . 910

[ 2 3 [} 3 &

B8O (T W PS1)

Ft3. 7 CORRELATION OF THE DATA IN FIGURES 4 AND 5 IN TERMS OF B0

"

w T T T Al T
AT % Mg
IN AL 531 783°k 833% cu%.EL .
L [+] a
0 3 ¢ 2 EmEI—
2. ry 36,000 338
!L X L] a ) 36000 33|
" T
DATA FROM
|es
10—

3

-1

X

DATA F &
FIG. 4

.

oz

o
=

10 A LOW STRESS RANGE — | HIGH STRESS RANGE -
K ez
I .
4
107
[+ I
0¢ 03 s 0 08 10® 100 " 2 18 o

o9 (T W PSH)
FiG. 6 CORRELATION OF THE DATA IN FIGURES ¢ AND 5 & TERMS OF O™

T e vy YL NI SO

S

STERAREY-o”



T T ST PN P ICIAT SU10) Do St o, S O A e AP e Pt v e g o YR AR S

0.03!

3. ATOMIC PERCENT MAGNESIUM IN ALUMINUN ALLOY.

PP————
.

5

€, TRUE CREEP STRAIN

\

0 : 2 3 4 5
TIME, MINUTES

FIG. 94 TRANSIENTS UPON APPLY!NG LOW STRESSES.

. - //S(DOPSi
o 7
17000 PSI /

Ve

2B Sl

(=
:
\'ﬁ-

>_“_..---""""
o1

€, TRUE CREEP STRAIN

s 3.1 ATOMIC PERCENT MAGNESIUM IN ALUMINUM ALLOY
PRECREPT TD €= G.07T7 AT 531°%K UNDER A CONSTANT
LOAD OF 10,000 PSi, THE LOAD WAS THEN DECREASED
TO THE VALUE INDICATED.

2 00700 | L 1 1 1 ! i 1
o] 10 20 30 40 50 80 70 80 30 00 110 i20
TIME, MINUTES
Q F1G. 98 TRANSIENTS UPCN DECREASING THE STRESS.

i A A SR RN




e EE— . S e

11
Another sbnormality was observed in the decrease in siress type of

data as shom in Fig. 10. Ths precreep datum just before the dscrezsa in

stresa is given by the ¢ symbol. Not until the stress was decreased more
than about 2000 psi below the precreep stress was the eBc relationship

; obtainad. Similar observations were made in &1l tests undertaken and the
;EE deviations of the final precreep datum frou the extrapolated 880- relation-
&

ship wa#é found to increase with increaaiﬁg precreep stress.

DISCUSSION
Ths identity of the activation energy for high temperaturs creep
with that for self-diffusion strongly suggests that high temperature creep
L2 is controlled by self-diffusion. Inasmuch as stress directed self-diffusion
alone camnoi account for the observed creep rates, it is= probable that creep

occurs by a dislocation climb process wherein the rate of self-diffusion

determines; in part, the rate of c¢limb. The insensitivity of the activa- °
tion energy term to the stress and the consequest separation of the temper-

ature and stress effects into two independent multiplicative terms might

i i 14 W 1 D

at first appear unorthodox.

In general the free energy for activation of a positive unit climdb
of a single dislocation will be &h - Tas - (— %J o ) whers Ah is the
activation energy for self-diffusion,As is the entropy of activation, (— 3—;))
is the potential energy gradient in the direction of climb and Q is the
atomic clinmb spacing. A simiiar expression applies for a negative climb
process sxcepting thet the sign preceding tha potential energy term is
changed bacause negative climb prccesses increase the ensrgy of the system.

Thus the net fnéquency of a unit climb is approximated by
as - a&h

™ kT dUuy @&
v:“‘ge“e sinh{(-a‘;)ﬁ}

! ]___,___“________
!
|
|
\
.
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11 . o
Motits analysis(—") suggests that ( " dy ) is lizsarly dependent or the

stress. But & simple calculation will reveal that (" ‘:l—; = 0 when the
dislocations from a single Fraﬁk-Read source are yot on their original slip
plane., In general a shear stress in the direction of slip cannot promote
climb., In fact in order %o have a non-vanishing value of (- %) at a
given dislocation it is necessary that surrounding dislocations te on other
slip planes. Thus the value of ( = g_(;)> that directs the climb of any one
dislocation depends on the surrounding pattern of dislocations or, in other
words, the structure. This structure is dependent primarily on the pre-
creep history and is evidently insensitive to the instantaneous applied
stress. The experimental evidence shows that (- ‘%i; o ) must be small
since the total value of (Ah + G:T(;), a) 1s known to be almost that for

self-diffusion, namely Al alone. If this is so, the hyperbolic sine term

reduces to its argument and
as - &h

K w

)& e

L
C

2

FanS
'

V

b 1Y
[«
~C

where the exponential term now gives only the Ah term for self-diffusion.
Under the assumption= wmade in this dislocation climb model for high

temperature creep, straining takes place because the ¢limbing dislocations

result in a reduction of the back stress at a Frenk-Reed source and thus

allow the generation of new dislocations. The actual details of this wro-

cess are so complex that for the preseni they defy an accurate mechanistic

-aalysis. But some concept of this process might be gained from a gross

statistical approach to the problem.
that have been generated by a single source. Let A be the avei ;2 area

swapt out by ecch of these dislocations on their slip planes wher & singl

dislocetion undertakss a unit climb. If N are the number of sct rces per

B AR LY S D T S

Iet N. be the number c¢f dis)ocations
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unit volume the creep strain per unit climb ie
E = AN Nc b
and the creep rate bscomes
duy ¥ 57
. - a /. K ®KT 1
3 2ANN<_b.R(a—>-,)e e (15)

In general therefore A , N¢ amd (—%%) mst be given appropriate average

values, Like (- gi;) the vslues of A' and N. also depend on the instan-
taneous structure.

The ntmber of active Frank-Read sources N depends on the applied
streas and the disiribution of source lengths. The stress nacessary to
promote creep at a Frank-Read sanrce(zo) will be es’.imatad to be
Gb

L

) (16)

where G = shear modulus
b = Burgers vector
L = source langth.
The mumber of sourcee having lengths between L and L+dL can be repre-

sented by

aN = @'(L) dL (17)
A1l sources having lengths greater than L. = g—" will be active under
strees ¢ . And all such sources will remain active because the back

stressez on these sources will be coniirmually relieved by the climb proce=s.

Thus no exhaustion of sources takes place and
o0

N = [q:’(mdL = Yo = P(Z (18)
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Consequently the creep rate is given by
as -8b =
e 2ank (-49)get e T 9(F) @

For a given structure A , N¢ and (— 5%) are fixed quantitiss and Eq. 19
reduces to the experimentally verified law of Bg. 14.

In addition to accounting for the observed dependence of the creep
rate on stress and temperature, the theory exhibits other viriuss. But
in view of the simplifying averaging methods that were employed in lieu of
a detailed mechanistic model of release of new dislocations from Frank-Reed
sources, the theory camnot yet be expected to account for all of the ob-
served facts.

l. Primary Creep. According to the theory primary creep is dune to

+he decrease in the structure dependent term /AN (- ‘j—;’) . But it is
not immediately apparent that this product should decrease over the primary
range.

2. Secondary Creep. As creep continues under a given gtress, the

dislocations will climb to subboundaries. . Finally a ateady state pattern
of dislocations will be obtained providirng a basis for secondary creep.

3. Tertiary Creep. Tertiary creep is extrsznsous to the simple dis-

location c¢limb thcory since it probably arises fram condensation of vacan-
cies znd conseguent growth of microcracks., It should bde possible to in-
troduce the essential features leading to tertiary creep &nd microfracturing

in the current model.
4+ Mechanical HMquation of State. According vo the dislocation climb

modal sach stress produces its unique structure. At high stresses the
number of climbing columns of dislocations is grecter due to the greater

initial packing c¢f dislocations along the slip plane. Thus the structure

MG, T TR WS 5 A
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devaloped during a dislocation climb prozess wiil be stress dependent (a2nd
insensitive to the temperature) as well us strain dependent in conformity
with experimental observations. For this reason the creep rate becames a
function of the past stress history as well as the instantaneous conditions-
of test. Necessarily the mechanical equation of state fails to arply to
creep.(z)

5. Transients. Upon first loading (- g—g) is small but as soon
as a few dislocations ¢limb abtove their original slip planes it should
increase due to the then greater increase in the potential energy gradient
in the climb direction. This is in conformity with the observed transient
upon applying low siressese.

Immediately upon decreasing tna siress thers sxicis a greeter number
of climking dislccatlione than the steady stats rmmber for that stress.
Consequently the initial creep rate upon a decreasc¢ in stress is greater
than the steady state value.

6. Effects of Alloying. The preliminary estimate given by Eq. 16

for the atress necessary to activate a Frenk-Read source neglected the
effect of non-conservative losses. Thsrmal lattice vibrations and localized
strain regions atout solute atoms are sources of internal stressss that
react with the moving dislocation. Since the energy of a system consisting
of a single constant length straight dislocation is unmodified by its posi-
tion in the crystal the energy required to move the dislocation through the
stress field is dissipated thermally. Therefore the actual stress required

to activate a source is somswhat larger than that given_by Eg. 16, say

q‘:(c-i—b 1+ K
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where K is a small quantity. Thus the functiom ? of Eq. 19 takes the

form
= g T+k

Gb

As suggested previously k increases with alloying. Consequently

N of Eg. 14 should decrease with alloying.

CONCLUSIOIS

s . e st ot

l. The activation energy for high tempersture creep of aluminum and
its dilute alloys is insensitive to the variables of stress and strain and

approximateas the value for self-diffusion.

£ 2. The creep rate equation for a constant structure is approximated '
[
by |
, -8k
£z Se T (o
where E, » creep rate
S = parameter that depends on the structure

AH = activation energy for self-diffusion

. K = gas constant

RO YRS f‘»‘_}'m Rbk 4 XD e o T

T = absolute temperature

g = etress

g
E\
s)_ Y ’ s 0" )
5 SPO)=s g’ o" 2 10 or BoO % 1S
le 1} .
£ se©E) - s'e® grs 0" or  BESLS
&
f The creep rate does not appear to be a hyperbolic sine function of
2=
i the stress.
& 3. Most of the available experimental evidence strongly supports :
’”‘ the dislocation climb model for high temperature creep. ;
f
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